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Abstract 

Oriented specimens of biomembranes give distinct X- 
ray diffraction patterns of circular symmetry along the 
equatorial plane. In order to interpret such a dif- 
fraction pattern, properties of the radial auto- 
correlation function were examined in detail in con- 
junction with electron-density distribution and applied. 
The radial autocorrelation function, which is the 
Fourier-Bessel transform of an intensity function with 
circular symmetry, is the radial projection of a two- 
dimensional autocorrelation function and can be 
interpreted in terms of Fourier components of electron- 
density projection along the membrane normal. Some 
useful information is obtainable on the structure of the 
scatterer: (i) the approximate size of the X-ray 
scatterer; (ii)judgement of crystalline or non-crystal- 
line arrangement of molecules; (iii) the existence of a 
regular arrangement of the electron-density fluctuations 
in a projection along the membrane normal; (iv) the 
rotational symmetry element existing in the scatterer if 
any. 

Introduction 

We have obtained continuous X-ray diffraction pat- 
terns in the equatorial direction from oriented speci- 
mens of some biomembranes; the outer membrane of 
Salmonella typhimurium and chromatophore from 
photosynthetic bacteria (Ueki, Kataoka & Mitsui, 
1976). These patterns are caused by regular arrange- 
ments of protein molecules in the plane of the 
membranes. They consist of several diffraction maxima 
which are much sharper than the 'halo' from 
amorphous materials but broader than crystalline 
reflections. Although these maxima could be indexed 
on the basis of appropriate two-dimensional crystalline 
lattices (Ueki, Kataoka & Mitsui, 1976; Ueki, Mitsui & 
Nikaido, 1979), electron microscopic studies did not 
show any crystalline domains for these membranes. 
Therefore, we must find an effective and decisive 
method to interpret the equatorial diffraction patterns 
of these membranes. 
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Since the problem is concerned with the arrangement 
of protein molecules in X-ray scatterers, the Patterson 
function is relevant to our purpose. In crystal structure 
analysis, the Patterson function gives information on 
the space group (Buerger, 1959). In the case of mem- 
branes, X-ray scatterers are randomly rotated with 
respect to an axis normal to the membrane surface 
when they are stacked, and the equatorial intensity is a 
circular symmetric function depending only on the 
radial coordinate of the cylindrical polar coordinates. 
The Patterson function calculated from such a circular 
symmetrical intensity is called the 'radial autocor- 
relation function'. The cylindrically symmetrical Patter- 
son function proposed for fibrous systems by MacGil- 
lavry & Bruins (1948), which is the same as the radial 
autocorrelation function in principle, has often been 
misunderstood to correspond to a cylindrically sym- 
metric structure. However, it was used to preserve non- 
circular symmetric components of electron-density 
distribution in the scatterers even if directional compo- 
nents of vectors are lost (Earnshaw, Casjens & 
Harrison, 1976). 

In this paper, we have developed a strict relation 
between the radial autocorrelation function and the 
electron-density distribution. We describe the useful- 
ness of the radial autocorrelation function in the inter- 
pretation of diffraction patterns from protein assem- 
blies in biomembranes through the model calculations 
for the arrangement of bacteriorhodopsin molecules 
which was given by Unwin & Henderson (1975). The 
equatorial diffraction pattern from the outer membrane 
was examined with the radial autocorrelation function. 

I. Estimation of the radial autocorrelation function 

1.1. Fundamental equations 

In this paper, X-ray diffraction is discussed in terms 
of cylindrical polar coordinates. Two-dimensional 
vectors, (r, tp) and (R,~), are used in real and recipro- 
cal space, respectively. Vector (u,x) is used in vector 
space. 
© 1980 International Union of Crystallography 
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We take a unique axis (z) of the membrane parallel 
to the membrane normal. An equatorial diffraction 
from the membrane corresponds mathematically to an 
electron-density projection along z. Thus, the X-ray 
scatterer which is related to the observed intensity, 
I(R, q~,0), is the electron-density projection a(r, qg) of the 
protein assembly on the membrane matrix. 

I(R,q~,0) = I fffp(r,¢,z) exp[-2n'/rR c o s ( ¢ -  q~)l 

x rdrd~odzl I 

= I ffcr(r,~o) exp[--2zrirR cos(cp -- q~)l 

x r dr dcpl 2 - I (R ,@) ,  (1) 

where 
e(r,~o) = fp(r,q),z) dz. 

In the X-ray specimens of biomembranes, all the 
rotational orientations of scatterers are equally prob- 
able about the z axis. Then, the observed equatorial 
intensity is a circular symmetrical function, Io(R), 
instead of I(R,~). Io(R) is obtained through the 
integration of I(R,  q~): 

Io(R ) = ZIFn (R)I 2, (2) 
n 

where 

F, (R) = exp(--inzdZ)fe, (r) J, (2zwR) 2zw dr. (3) 

Jn is the Bessel function of order n (Waser, 1955; 
Franklin & Klug, 1955). In the equation, On(r) is the 
Fourier coefficient in the expansion of cr(r,~o) with 
respect to ~0 and is given by 

1 
an(r) = - ~  fcr(r,q;) exp(in~0) d~0. (4) 

A radial autocorrelation function Ao(u) is given by 
the inverse Fourier-Bessel transform of Io(R) (MacGil- 
lavry & Bruins, 1948): 

Ao(u ) = fIo(R)Jo(27rRu ) 2~zR dR. (5) 

It is important to point out that Ao(u) is the first term 
in the Fourier expansion of A(u,x) with respect to azi- 
muth X and is to be understood as the radial projection 
of A(u,x). Therefore, Ao(u) must be discussed on the 
basis of the two-dimensional autocorrelation function 
A (u,x) of the structure in conjunction with the arrange- 
ment of molecules in the scatterer. In general, an 
electron-density projection, a(r,~o), can be expressed by 
summation of electron-density fluctuations. (As an 
example, the structure of a trimer of bacteriorhodopsin 
from purple membrane is shown in Fig. 1.) Vectors be- 
tween fluctuations are represented by A (u,x), that is, the 
disposition function of fluctuations determines the peak 
positions in A(u,x) and thus Ao(u). Especially in the 
case of crystals, the disposition function is a lattice 
function. We must have appreciable peaks in Ao(u) 
which correspond to the vectors of the lattice points in 

a crystalline structure; for instance, if the equatorial 
diffraction pattern is from a two-dimensional hexagonal 
structure, we must observe large peaks at u = a, v/3a, 
2a and so on (a being the cell edge). 

1.2. Radial autocorrelation function and electron- 
density fluctuation 

As was pointed out by MacGillavry & Bruins 
(1948), Ao(u) is not calculated from the self- 
convolution of circular symmetrical electron density, 
go(r). This point can be clearly shown by the next 
equation which is derived from (2) and (5): 

Ao(u ) = ~.flF,(R)I 2 Jo(2zrRu) 27rR dR 
n 

= Z a,(u). (6) 
n 

Each a,(u) can be discussed on the basis of the Fourier 
components of electron-density fluctuation as follows. 

In order to clarify the physical meaning, we 
represent the complex Fourier coefficient e,(r) in terms 
of the modulus len(r)l and phase ~t,(r). Then, e(r#)  
can be expressed by (Vainshtein, 1966). 

e(r,~o) = co(r) + 2 ~ Icrn(r)l cos[nq~ + ttn(r)]. (7) 
n > 0  

The nth component represents the electron-density fluc- 
tuation with n-fold rotational symmetry and its 
Fourier transform, F'(R,@), is related to F,(R) by (3) 
a s  

F' (R ,~ )  =-- o~-{21Crn(r)l cos[ncp + an(r)]} 

21Fn(R)l cos[n@ + fin(R)] (n even) 

= 2ilF,(R)I sin[nq~ + ft,(R)], (n odd) (8) 

where J denotes the Fourier transform and ft,(R) is 
the phase of F,(R). The Fourier transform of 
IF'(R,q012 is equal to the self-convolution of the n-fold 
rotational symmetrical component of a(r,~o) as is well 
known from the multiplication theorem of the Fourier 
integral. 2 

~- [  IF ' (R,  q~)l 2] = 21 en(r)l cos [n~o + a.(r)l 

= a'(u,x). (9) 

where 2 denotes the self-convolution operation, a'(u,x) 
is a two-dimensional function with 2n-fold rotational 
symmetry given by 

"4fflF,(R)t 2 cos2tnq~ +/~, (R)] 

x exp[2rdRu cos(q~ -- Z)] R dR d ~  

(n even) 
a'(u,x) = 

4ff lF,(R)l  2 sin2[nq0 +/~,(R)] 

× exp[2rciRu cos(q~ - X)] R dR d ~  

(n odd) 
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= 2(flF,,(R)I 2 J0(2rd~u) 2r,.R dR 

+ Re{exp(i2nz)flF,(R)l 2 exp[i2fln(R)] 

x Jzn(2nRu) 2nR dR }). (10) 

On integration of (10) with respect to Z to obtain the 
radial projection of a'(u,z), we have 

(a '(u,~)) x = 2flFn(R)I 2 Jo(ZnRu) 2nR dR 
= 2a,(u). 

= :r(a,(u,z))x. (1 I) a . ( u )  ' ' 

Similarly, we can conclude that a , (u )  contributes to 
(a',(u,z))x as the other half component. 

Equations (9) and (11) show that a,(u) is the radial 
autocorrelation function of the component with n-fold 
rotational symmetry of electron-density projection, 
la . ( r )  l cos[n(o + a,(r)],  ao(U) clearly corresponds to the 
circular symmetrical electron density a0(r) and a,(u) 
includes information on the n-fold rotational sym- 
metrical component. If we can extract the contri- 
butions of each an(u) from Ao(u), we may find the 
symmetry element of the X-ray scatterer. 

1.3. Analysis of radial autocorrelation function. 

We can extract useful clues for the structure of the 
scatterer from A 0(u) as follows. 

(i) The approximate size of the X-ray scatterer is 
easily estimated, if the scatterer is finite, from the region 
where Ao(u) approaches zero (Porod, 1951). 

(ii) Arrangement of constituent molecule~: whether it 
is crystalline or not. 

(iii) Fine structure in A o(u) shows explicitly the 
existence of electron-density fluctuations in the projec- 
ted a(r4o) along the z axis. 

(iv) Fine structure in Ao(u) suggests the regular 
arrangements of electron-density fluctuations such as 
rotational symmetry, because fine fringes in Ao(u) 
suggest that the contribution of a,  (u) is appreciable. 

lI. Estimation of Ao(u) for arrangements of baeterio- 
rhodopsin in purple membrane 

The structure of the purple membrane was established 
by the filtering technique of electron micrographs 
(Unwin & Henderson, 1975). The essence of the 
structure is a two-dimensional hexagonal arrangement 
of trimers of protein, bacteriorhodopsin, with cell edge 
62.7 .A. The trimer has a threefold rotational sym- 
metry (Fig. 1). The monomer is composed of seven 
rod-like structures. The rods were found to be c~-helices 
by X-ray diffraction (Henderson, 1975; Blaurock, 
1975), and are approximately parallel to each other and 
parallel to the z axis. 

Circular symmetrical intensity functions were cal- 
culated for the monomer and trimer by the formula 

given by Oster & Riley (1952). Fig. 2 shows intensity 
functions for the monomer and trimer of bacterio- 
rhodopsin molecules, and the intensity for purple 
membrane which was taken from Henderson (1975). 

Fig. 1. Model structure of the trimer of bacteriorhodopsin projected 
along the z axis. The shaded regions show the monomers of 
bacteriorhodopsin which are arranged about a threefold rota- 
tional axis to form a trimer. The open circles show the seven 
a-helices (rods) which are parallel to each other. Rods have high 
electron density in the structure. The electron-density profile of a 
rod is approximated by an isotropic Gaussian function in the 
calculation of lo(R). When trimers are arranged according to a 
two-dimensional hexagonal lattice with a = 62.7 A, the structure 
of the purple membrane is formed. The original structure was 
presented by Unwin & Henderson (1975). 
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Fig. 2. Equatorial intensity functions, 10(R), for the monomer and 
trimer of bacteriorhodopsin and purple membrane. Solid line: 
monomer; broken line: trimer; vertical lines: Bragg reflections of 
purple membrane (taken from Henderson, 1975). 
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The monomer gives a continuous intensity function 
which has only one broad diffraction maximum at d _~ 
10 A. The trimer apparently causes fine structure in the 
intensity profile. The broken line in Fig. 2 has similar 
features to the observed intensities from the outer 
membrane of S. typhimurium and chromatophore: 
broad but distinct diffraction maxima. Therefore, we 
can conclude that such a regular arrangement provides 
small- and moderate-angle diffraction patterns up to a 
spacing of 6-7 A. Five maxima in the diffraction profile 
from the trimer can be indexed as a two-dimensional 
hexagonal lattice with a = 80 A. This indexing is, of 
course, not meaningful, since the rods in the trimer 
have no crystalline arrangement, as is clear from Fig. 1. 
This fact indicates that indexing of a diffraction pattern 
may sometimes lead to incorrect conclusions for X-ray 
scatterers with such profiles. The intensity function for 
purple membrane consists of sharp Bragg reflections; 
they can be indexed as a two-dimensional hexagonal 
lattice with a = 62.7 A (Blaurock & Stoeckenius, 
1971). 

Radial autocorrelation functions calculated from the 
intensities in Fig. 2 are shown in Fig. 3. They 
correspond to the structures of monomer, trimer and 
purple membrane as below. 

(i) Ao(u)'s for monomer and trimer decrease to zero 
at about 33 and 53 A, in agreement with the sizes of the 
scatterers, while that for the purple membrane does not. 

(ii) Ao(u) for the purple membrane gives the peaks 
due to the two-dimensional hexagonal arrangement of 
trimers, at u = 63, 109, 126 A, etc., which correspond 
to the first, second, third, etc. neighbours in the lattice. 
In addition, there are peaks which come from the 
intra-trimer vectors. On the other hand, Ao(u) for the 
trimer does not have peaks at u = 80 A and so on, 
which must appear if the above-mentioned hexagonal 
lattice (a = 80 A) is correct. Therefore, the indexing of 
the diffraction profile for the trimer is only by accident. 

(iii) Fine structures of the first two can be inter- 
preted on the basis of inter-rod distances (see Fig. 1). 
Peaks in A0(u) for the monomer reflect the 
intramolecular structure of the bacteriorhodopsin 
molecule, i.e. a peak at about 10 A in Ao(u) is from the 
nearest-neighbour distances of rods. The fact that no 
other appreciable peaks are observed in Ao(u) for the 
monomer implies that there is no regular arrangement 
of rods in the molecule. Ao(u) for the trimer gives 
information as to the intra- and inter-molecular vectors. 
The trimer gives more distinct peaks due to the regular 
arrangement of rods according to threefold rotational 
symmetry; the contribution of terms a,(u) to Ao(u) in 
addition to ao(u) is appreciable, especially a3(u) and 
higher terms. 
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Fig. 3. Radial autocorrelation functions, A0(u), for (a) monomer, 

(b) trimer of bacteriorhodopsin and (c) purple membrane. 
Arrows in (c) indicate the expected positions of vectors from the 
two-dimensional hexagonal arrangement of trimers. 

III. Interpretation of equatorial diffraction from outer 
membranes 

We have found in-plane structural order in the outer 
membrane from S. typhimurium and chromatophore 
from photosynthetic bacteria (Ueki, Kataoka & Mitsui, 
1976). Stacked membranes give diffuse but distinct 
X-ray diffraction in the equatorial direction. The 
equatorial diffraction pattern from the outer membrane 
was interpreted by means of a radial autocorrelation 
function. 

The radial autocorrelation function of the outer 
membrane (see Fig. 3 of Ueki, Mitsui & Nikaido, 1979) 
reveals features of the protein assemblies as follows. 

(i) The size of the scatterer is estimated to be about 
100 A at the most. 

(ii) Although the equatorial reflections can be 
indexed as a two-dimensional hexagonal lattice with a 
= 80 A (Ueki, Mitsui & Nikaido, 1979),A0(u) does not 
have the peaks expected from the assumed lattice. 
Therefore, the indexing is concluded to be accidental. 
This result is consistent with the electron microscopic 
study (Smit, Kamio & Nikaido, 1976). 

(iii) Fine structure in Ao(u) indicates the existence of 
fluctuations in the projected electron-density distri- 
bution. 

(iv) Arrangement of the fluctuations has a regularity 
other than crystalline order (see Discussion). 
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Discussion 

The results in the former sections showed that indexing 
of intensity maxima sometimes led to erroneous 
conclusions for the arrangement of molecules in an 
assembly with finite size. In such scattering systems, we 
found that the radial autocorrelation function, Ao(u), 
provided useful information about the structure of the 
scatterer. 

Although Ao(u ) is directly derived from the observed 
intensity function without any assumption, there are 
two problems encountered in the analysis of such a 
system; one is the background subtraction to obtain an 
intensity function from the experimental data and the 
other is the truncation effect. 

We have examined the effects of background 
subtraction On Ao(u) by using intensity functions from 
the outer membrane and chromatophore. By various 
estimations of background level, I0(R)'s were obtained 
and were transformed into A0(u)'s. The results in- 
dicated that peak positions of vector magnitudes in 
Ao(u) were not influenced appreciably (the shifts are 
only 0.5-1.0 ./k) by different background levels, but 
peak heights changed considerably. In the approach of 
the radial autocorrelation function presented in this 
paper, we utilized peak positions and were not 
concerned with quantitative analysis of peak heights. 
Therefore, the above discussion is not influenced by the 
ambiguity of background subtraction. 

As for the truncation effect, peak positions in Ao(u ) 
are little influenced, except for a small u region, as a 
result of the calculations of model structures. Thus, the 
above discussion is also valid if Ao(u ) is calculated 
through Io(R ) at the resolution of about 7 A. 

Provided that we have intensity data with sufficient 
accuracy and can also estimate the background level 
with reliability, we can perform a more quantitative 
analysis of the radial autocorrelation function. As is 
clear from (6), if we can estimate each a,(u) from 
Ao(u), the radial autocorrelation function is a powerful 
technique for the structure analysis. How is a,(u) 
estimated? Firstly, we estimate a function [A0(u ) - 
a0(u)] by drawing a mean curve through Ao(u), and this 
function corresponds to 

[Ao(u)-  ao(U)] = Z a,,(u). 
n:~O 

In the equation, a,(u) can be discussed on the basis of 
the nth Fourier component of electron-density fluc- 
tuation and its autocorrelation function, as is discussed 
in the former section; for n = 1, the structure is of a 
dipole arrangement, for n = 2, the arrangement is 
quadrupole and so on. These arrangements of electron- 
density fluctuations give characteristic vectors in A (u,x) 
and hence vector magnitudes in Ao(u ) (see Fig. 4). For 
instance, if we can find a minimum at r 0 and a 
maximum at x/'2r0 in Ao(u), these peaks suggest an 

arrangement of electron-density fluctuations with n = 
2, and if we find two minima at r 0 and 2r 0 and one 
positive maximum at v/3r0, an arrangement of electron- 
density fluctuations with n --- 3 is predicted. In Fig. 4, 
the above-mentioned cases are depicted schematically. 

Thus, we can find the Fourier components of 
electron-density fluctuations by way of the radial 
autocorrelation function. Especially when the scatterer 
has rotational symmetry, the method of radial autocor- 
relation function will be quite effective for structure 
analysis. 

In the case of the outer membrane, we did not know 
the background level with sufficient accuracy so we did 
not have any conclusive results from the procedure 
mentioned above. However, we could still suggest 
relations between the peak positions in A0(u); n = 3 
seemed to be best-fitted. The electron microscopic 
study on the outer membrane from Escherichia coli 
suggested that the protein assembly had threefold 
rotational symmetry (Steven, Heggeler, Miller, Kistler 
& Rosenbusch, 1977). Since the X-ray diffraction 
pattern from the outer membrane of S. typhimurium 
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Fig. '41 Schematic picture of la,(r)l cos(rap) with (a) n = 2 and (b) 
n = 3, and corresponding (c) a2(u) and (d) a3(u). Solid line of (a) 
and (b) indicates positive and broken line negative values. 
Symbols + and - represent maximum and minimum, respec- 
tively. High electron-density regions are located on the circle with 
two- or three-fold rotational symmetry and the second or the 
third Fourier component of the electron-density fluctuations is 
shown as (a) or (b). The maxima and minima in (c) or (d) 
correspond to the magnitude of vectors indicated in (a) or (b), 
respectively. 
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resembles very much that of E. coli (Ueki, Tanaka, 
Nakae & Nikaido, 1979), the agreement of the results 
from X-ray and electron microscopy indicates that the 
interpretation of Ao(u) is correct. The model construc- 
tion of the protein assembly from Ao(u ) with threefold 
rotational symmetry was carried out and we have 
obtained a reasonable model structure of the assembly 
(Ueki, Tanaka & Nakae, 1979). 

For the equatorial diffraction from chromatophore 
of Rhodospirillum rubrum, the method using the radial 
autocorrelation function was applied. Although we 
have reported that equatorial reflections could be 
indexed as a two-dimensional hexagonal lattice with 
a = 42.6 A (Ueki, Kataoka & Mitsui, 1976), the radial 
autocorrelation function suggests that the protein 
assembly is not crystalline but has rotational sym- 
metry. Details will be published elsewhere (Kataoka & 
Ueki, 1979). 

References 

BLAUROCK, A. E. (1975). J. Mol. Biol. 93, 139-158. 
BLAUaOCK, A. E. & STOECKENIUS, W. (1971). Nature 

(London) New Biol. 233, 152-155. 

BUERGER, M. J. (1959). Vector Space and its Application in 
Crystal-Structure Investigation. New York: John Wiley. 

EARNSHAW, W., CASJENS, S. d~. HARRISON, S. C. (1976). J. 
Mol. Biol. 104, 387-410. 

FRANKLIN, R. E. & KLUG, A. (1955). Acta Cryst. 8, 
777-780. 

HENDERSON, R. (1975). J. Mol. Biol. 93, 123-138. 
KATAOKA, M. & UEKI, T. (1979). In preparation. 
MACGILLAVRY, C. H. & BRUINS, E. M. (1948). Acta Cryst. 

1, 156-158. 
OSTER, G. & RILEY, D. P. (1952). Acta Cryst. 5, 272-276. 
POROD, G. (1951). KolloidZ. 124, 83-114. 
SMIT, J., KAMIO, Y. & NIKAIDO, H. (1976). J. Bacteriol. 124, 

942-958. 
STEVEN, A. C., HEGGELER, B., MILLER, R., KISTLER, J. & 

ROSENaUSCH, J. P. (1977). J. Cell Biol. 72, 292-301. 
UEKI, T., KATAOKA, M. • MITSUI, T. (1976). Nature 

(London), 262, 809-810. 
UEKI, T., MITSUI, Z. & NIKAIDO, H. (1979). J. Biochem. 

(Tokyo), 85, 173-182. 
UEKI, T., TANAKA, M. & NAKAE, T. (1979). In preparation. 
UEKI, Z., TANAKA, M., NAKAE, T. & NIKAIDO, n .  (1979). In 

preparation. 
UNWIN, P. N. T. & HENDERSON, R. (1975). J. Mol. Biol. 94, 

425-440. 
VAINSHTEIN, B. K. (1966). Diffraction of X-rays by Chain 

Molecules. Amsterdam: Elsevier. 
WASER, J. (1955). Acta Cryst. 8, 142-150. 

Acta Cryst. (1980). A36, 287-295 

The Physical Foundations of the Computer Simulation of X-ray Traverse Topographs 

BY P. V. PETRASHEN'* 

Physical-Technical Institute, Academy of  Sciences of  the USSR, Leningrad, USSR 

F. N. CHUKHOVSKII 

Institute of  Crystallography, Academy of  Sciences of  the USSR, Moscow, USSR 

AND I. L. SHULPINA 

Physical-Technical Institute, Academy of  Sciences of  the USSR, Leningrad, USSR 

(Received 1 December 1978;accepted 18 October 1979) 

Abstract 

A general problem of the computer simulation of X-ray 
traverse topographs is treated on the basis of the 
Green-function method. Special attention is paid to the 
role of partial coherence of the incident radiation and to 
the problem of accounting for it in the practical 
calculations. The reciprocity theorem for the Green 
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0567-7394/80/020287-09501.00 

functions is proved rigorously in the X-ray diffraction 
optics and is applied to solve the problem in question. 
Different approaches based on the solution of the 
boundary problem of the Cauchy type and on the 
Green-function method are analysed and are compared 
from the view point of the computation time needed 
and of their adaptation capability to real experimental 
conditions. It is shown that, in the present case of a 
small correlation length in the primary beam, the Green 
function method has very significant advantages, which 
make it the only one acceptable for practical computer 
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